Example 6.1. Consider the linear system
\[
\begin{bmatrix}
1 & 2 \\
2 & 3.999
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} =
\begin{bmatrix}
4 \\
7.999
\end{bmatrix}, \quad (A\overrightarrow{x} = \overrightarrow{b}) \tag{6.1}
\]

The solution is \(\overrightarrow{x} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}\). Making a small change in the right hand side of the equations to
\[
\begin{bmatrix}
1 & 2 \\
2 & 3.999
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} =
\begin{bmatrix}
4.001 \\
7.998
\end{bmatrix}, \quad (A\overrightarrow{x} = \tilde{\overrightarrow{b}}) \tag{6.2}
\]
gives the solution \(\tilde{\overrightarrow{x}} = \begin{bmatrix} -3.999 \\ 4 \end{bmatrix}\). We only perturb \(\overrightarrow{b} = \begin{bmatrix} 4 \\ 7.999 \end{bmatrix}\) to \(\tilde{\overrightarrow{b}} = \begin{bmatrix} 4.001 \\ 7.998 \end{bmatrix}\), why does the solution \(\overrightarrow{x} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}\) change to \(\tilde{\overrightarrow{x}} = \begin{bmatrix} -3.999 \\ 4 \end{bmatrix}\) by so much? (\(\|\overrightarrow{b} - \tilde{\overrightarrow{b}}\|_\infty = ?\), \(\|\overrightarrow{x} - \tilde{\overrightarrow{x}}\|_\infty = ?\))

The condition number associated with the linear system
\[
A\overrightarrow{x} = \overrightarrow{b} \tag{6.3}
\]
gives a bound on how inaccurate the approximation of \(\overrightarrow{x}\) will be when the system is solved by an approximation method. Note that for iterative methods such as JM, GS, and SOR we only obtain an approximate solution \(\overrightarrow{x}^{(k)}\) to the exact solution \(\overrightarrow{x}\). Another way to view this is that the vector \(\overrightarrow{b}\) is perturbed to \(\tilde{\overrightarrow{b}}\) so that
\[
A\overrightarrow{x}^{(k)} = \tilde{\overrightarrow{b}}. \tag{6.4}
\]

The condition number of (6.1) denoted by Cond\((A)\) is defined to be the maximum ratio of the relative error in \(\overrightarrow{x}\) divided by the relative error in \(\overrightarrow{b}\) in some norm \(||\cdot||\), i.e.,
\[
\text{Cond}(A) = \max_{\overrightarrow{b}} \frac{||\overrightarrow{x} - \overrightarrow{x}^{(k)}||}{||\overrightarrow{x}||} \frac{||\overrightarrow{b}||}{||\overrightarrow{b} - \tilde{\overrightarrow{b}}||}. \tag{6.5}
\]
So now the question is: If the data \(\vec{b} \) is perturbed a little bit, will we get very large error in \(\vec{x} \)? If yes, we say that the matrix \(A \) is ill-conditioned and is well-conditioned otherwise. The larger the \(\text{Cond}(A) \), the more ill-condition of \(A \) will be. Further computations on (6.5) yield

\[
\text{Cond}(A) = \max \frac{\| A^{-1} \vec{b} - A^{-1} \tilde{\vec{b}} \|}{\| \vec{b} - \tilde{\vec{b}} \|} = \max \frac{\| A^{-1} \vec{b} - A^{-1} \tilde{\vec{b}} \|}{\| A^{-1} \tilde{\vec{b}} \|} = \max \frac{\| A^{-1} \vec{b} - A^{-1} \tilde{\vec{b}} \|}{\| \vec{b} - \tilde{\vec{b}} \|} \cdot \| A \| \quad (6.6)
\]

where the matrix norm of any matrix \(A \) is defined by

\[
\| A \| = \max \left\{ \| A \vec{y} \| : \text{for any } \vec{y} \in \mathbb{R}^N \text{ with } \| \vec{y} \| \leq 1 \right\} = \max_{\vec{y} \neq 0} \frac{\| A \vec{y} \|}{\| \vec{y} \|} \quad (6.7)
\]

Theorem 6.1. Let \(A \) be an \(m \times n \) real matrix. Then

\[
\| A \|_{\infty} = \max_{1 \leq i \leq m} \sum_{j=1}^{n} |a_{ij}| \quad (\text{the maximum of absolute row sums}). \quad (6.8)
\]

Example 6.2. Find the condition number of \(A \) in Example 6.1.

\[
A = \begin{bmatrix} 1 & 2 \\ 2 & 3.999 \end{bmatrix}, \quad A^{-1} = \begin{bmatrix} -3999 & 2000 \\ 2000 & -1000 \end{bmatrix}, \quad \| A \|_{\infty} = 5.999, \quad \| A^{-1} \|_{\infty} = 5999, \quad \text{Cond}(A) = \| A \|_{\infty} \| A^{-1} \|_{\infty} = 5.999 \times 5999 \approx 36000. \quad (6.9)
\]

It is very large and hence (6.1) is very ill-conditioned.

Question: If we are given an ill system, can we make it better before solving it?

Example 6.3. For the system

\[
\begin{bmatrix} 1 & 2 \\ 0 & 10^{-20} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 10^{-20} \end{bmatrix}, \quad (6.11)
\]

can you make it better conditioned without changing the solution? Compare the condition numbers between the old and new systems.

24
A **preconditioner** P of a matrix A is a matrix such that $P^{-1}A$ has a smaller condition number than A. Preconditioners are useful when using an iterative method to solve a large, sparse linear system for \mathbf{x} since the rate of convergence for most iterative linear solvers degrades as the condition number of a matrix increases. Instead of solving the original linear system (6.1), one may solve either the left preconditioned system via

$$P^{-1}A\mathbf{x} = P^{-1}\mathbf{b}$$

(6.12)

or the right preconditioned system via

$$AP^{-1}\mathbf{y} = \mathbf{b}, \quad P^{-1}\mathbf{y} = \mathbf{x}$$

(6.13)

in which we hope that the new matrix $P^{-1}A$ or AP^{-1} is much better conditioned than A provided that the computation of the new matrix is efficient.

The three systems (6.1), (6.12), and (6.13) are equivalent so long as the preconditioner matrix P is nonsingular.

Example 6.4. What is your preconditioner for Example 6.3? Replacing $\mathbf{x}^{(k)}$ and $\mathbf{x}^{(k-1)}$ by \mathbf{x}, (3.7) is written as

$$\mathbf{x} = -D^{-1}(L + U)\mathbf{x} + D^{-1}\mathbf{b}$$

(6.14)

which is equivalent to

$$D^{-1}A\mathbf{x} = D^{-1}\mathbf{b}$$

(6.15)

Therefore, D^{-1} is the **Jacobi preconditioner** of the matrix A, which is one of the simplest forms of preconditioning. The preconditioners of A so far are:

<table>
<thead>
<tr>
<th></th>
<th>A^{-1}</th>
<th>Symmetric?</th>
</tr>
</thead>
<tbody>
<tr>
<td>JM</td>
<td>$\approx D^{-1} =: P_{JM}^{-1}$</td>
<td></td>
</tr>
<tr>
<td>GS</td>
<td>$\approx (D + L)^{-1} =: P_{GS}^{-1}$</td>
<td>Non-symmetric</td>
</tr>
<tr>
<td>SOR</td>
<td>$\approx (D + wL)^{-1} =: P_{SOR}^{-1}$</td>
<td>Non-symmetric</td>
</tr>
<tr>
<td>SSOR</td>
<td>$\approx (D + wL)^{-1}(D + wU)^{-1} =: P_{SSOR}$</td>
<td>Symmetric?</td>
</tr>
</tbody>
</table>

The convergence rate of iterative methods depends on spectral properties of the coefficient matrix A. $A\mathbf{x} = \lambda\mathbf{x}$, (λ, \mathbf{x}) is an eigenpair of A if $A\mathbf{x}_i = \lambda_i\mathbf{x}_i$ and $\mathbf{x}_i \neq 0$. The spectral radius of A is defined as $\rho(A) = \max_{1 \leq i \leq N} |\lambda_i|$ and the spectrum of A is denoted by $\sigma(A) = \{\lambda_i\}^N_{i=1}$. Hence one way attempt to transform $A\mathbf{x} = \mathbf{b}$ into one that is equivalent in the sense that it has the same solution, but that has more favorable spectral properties.
If we assume that the coefficient matrix A is *symmetric*, then **SSOR** combines two SOR sweeps (a forward SOR sweep followed by a backward SOR sweep) together in such a way that the resulting iteration matrix is similar to a symmetric matrix. We say that

$$A \sim B, \text{ if } \exists Q \text{ s.t. } Q^{-1} BQ = A.$$

The similarity of the SSOR iteration matrix to a symmetric matrix permits the application of SSOR as a *preconditioner* for other iterative schemes for symmetric matrices. Indeed, this is the *primary motivation* for SSOR since its convergence rate, with an optimal value of ω, is usually *slower* than the convergence rate of SOR with optimal ω.

<table>
<thead>
<tr>
<th>Table 6.2. Iterative Methods in Component Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>JM</td>
</tr>
<tr>
<td>GS</td>
</tr>
<tr>
<td>SOR</td>
</tr>
<tr>
<td>FGS</td>
</tr>
<tr>
<td>BGS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 6.3. Iterative Methods in Matrix Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>JM</td>
</tr>
<tr>
<td>GS</td>
</tr>
<tr>
<td>SOR</td>
</tr>
<tr>
<td>FGS</td>
</tr>
<tr>
<td>BGS</td>
</tr>
<tr>
<td>SSOR</td>
</tr>
<tr>
<td>$B_1 = (D + \omega U)^{-1} (-\omega L + (1 - \omega)D) : \text{Backward SOR Sweep}$</td>
</tr>
<tr>
<td>$B_2 = (D + \omega L)^{-1} (-\omega U + (1 - \omega)D) : \text{Forward SOR Sweep}$</td>
</tr>
</tbody>
</table>

Algorithm SSOR: Symmetric Successive Overrelaxation Method

Input: N: Number of unknowns and equations; a_{ij}: Entries of A, $i, j = 1 \cdots N$; b_i: Entries of b, $i = 1 \cdots N$. TOL: Error Tolerance; $\omega = 1.3$ (for example).
Output: $x_i^{(k)}$: Entries of $\vec{x}^{(k)}$ (approximate solution) or Error Message.

Step 1. Choose an initial guess $\vec{x}^{(0)}$ to the solution \vec{x}.

Step 2. For $k = 1, 2, 3 \cdots, k_{\text{max}}$

Step 3. For $i = 1, 2, \cdots, N$ (Forward)

Step 4. \(\sigma = 0 \)

Step 5. For $j = 1, 2, \cdots, i - 1$

Step 6. \(\sigma = \sigma + a_{ij}x_j^{(k-\frac{1}{2})} \)

Step 7. End j loop

Step 8. For $j = i + 1, \cdots, N$

Step 9. \(\sigma = \sigma + a_{ij}x_j^{(k-1)} \)

Step 10. End j loop

Step 11. \(\sigma = (b_i - \sigma)/a_{ii} \)

Step 12. \(x_i^{(k-\frac{1}{2})} = \omega\sigma + (1 - \omega)x_i^{(k-1)} \)

Step 13. For $i = N, N-1, \cdots, 1$ (Backward)

Step 14. \(\sigma = 0 \)

Step 15. For $j = 1, 2, \cdots, i - 1$

Step 16. \(\sigma = \sigma + a_{ij}x_j^{(k-\frac{1}{2})} \)

Step 17. End j loop

Step 18. For $j = i + 1, \cdots, N$

Step 19. \(\sigma = \sigma + a_{ij}x_j^{(k)} \)

Step 20. End j loop

Step 21. \(\sigma = (b_i - \sigma)/a_{ii} \)
Step 22. \[x_i^{(k)} = \omega \sigma + (1 - \omega) x_i^{(k-\frac{1}{2})} \]

Step 23. End i loop

Step 24. If \[\| r^{(k)} \|_{\infty} < \text{TOL} = 10^{-6} \] then Stop otherwise Set \[x^{(k-1)} = \tilde{x}^{(k)} \] and Go To Step 2.

Step 25. End k loop

Step 26. Error: Not convergent with the max number of iterations \(k_{\text{max}} \) and TOL.

Project 6.1. Consider the 1D Poisson Problem (1.1) (with \(f(x) = 2 \), \(g_D = 0 \), and \(g_N = 0 \)) and implement the methods FDM and SSOR.

Input: \(N, A, \tilde{x}, k_{\text{max}}, \text{TOL}, \omega \) (write the input in the program).

Output:

\[
\begin{array}{|c|c|c|c|c|}
\hline
N & k & E^x & E^u & \alpha \\
\hline
5 & & & & \\
9 & & & & \\
17 & & & & \\
33 & & & & \\
129 & & & & \\
\hline
\end{array}
\]