²MµØ¤j¾Çp¬ì©Ò
¤H¤u´¼¼zµ{¦¡³]p
Artificial
Intelligence Programming
ICMS National Tsing
Hua University
¼B®Ê¨}
Jinn-Liang Liu
2017
Fall Course
Lecture: PHYSª« 504, 1:20pm,
Mondays (2017.9.11 ¡V 12.25)
Seminar: PHYSª« 504, 2:45pm,
Mondays (2017.9.11 ¡V 12.25)
Grading: Coding Projects and Reports
100%
Reports: Send reports in ppt (short) and pdf (long) files
to jinnliu@mail.nd.nthu.edu.tw on
10/15; 11/15; 12/25.
¤u·~²©R¡G°Ê¤O1.0 (1760)¡A¹q¤O2.0 (1870)¡A¼Æ¦ì3.0 (1945)¡A´¼¤O4.0 (2016 AlphaGo)
AI Å¥»¡Åª¼gºâ¦æÀ¸²q³ÐÂå¬ã¡K, I/O AI,
What AI, How AI. ADA.
Part I Computer
Programming (Browse and Use)
2.
TensorFlow Programming (W1: Proj1: tf1.py, tf2.py, tf3.py)
Coding Notes
1. tf1.py: # Install Anaconda3-4.2.0 => Install PyCharm Community Edition 2017.1.4
# PyCharm => File => New Project => Location D:\AI\TF => Interpreter (Far Right Button) Click on Create Conda Env
# => Tools => Python Console => >>> import pip => >>> pip.main(['install', 'tensorflow'])
# See YouTube Link for more. # Put this file tf1.py in \TF. Run it. Done.
2. tf2.py: # How to use TensorBoard. # PyCharm => View => Tool Windows => Terminal => tensorboard --logdir="./graphs" --port 6006
# Google Chrome => http://localhost:6006/ => GRAPHS
3. tf3.py (Proj1: Google Code: mnist_softmax.py): # Google Chrome => http://localhost:6006/ => GRAPHS
4. mnist_1.0_softmax.py (Proj2: Google Code): # Error: matplotlib not installed
# PyCharm => File => Setting => Project: TF => Project Interpreter => + => matplotlib => Specify version => Install # Save zout_MNIST_1.0.png
Part II Artificial
Intelligence (Read and Work)
1. A Simple Learning Model: Classification,
Target, Hypothesis, Training Data, Learning Algorithm, Weights, Bias,
Supervised and Unsupervised Learning
2. Google Tutorial for ML Beginners: Image Recognition,
MNIST, Softmax Regression (92%), Cross
Entropy, Gradient Descent, Back Propagation,
Computation Graph (Proj1: TensorFlow
Code 1, Link)
3. Tensorflow
and Deep Learning I by Martin Gorner: Deep Learning Network, ReLU,
Learning Rate (98%), Overfitting, Dropout (98.2%), Convolutional Neural Network (98.9, 99.3%) (Proj1, 2, 3, 4: TensorFlow
Code 1, 2, 3, 4, Download)
4. Tensorflow
and Deep Learning II by Martin Gorner (RNN1): Batch Normalization
(99.5%), Data Whitening, Fully Connected Network, TensorFlow
API, MNIST Record (99.7%), Recurrent Neural Network, Deep RNN, Long Short Term Memory, Gated
Recurrent Unit, Language Model, Cloud Machine Learning (Proj5: TensorFlow
Code 3)
Part III AI Seminar
1. 2017.8.1: Udacity
Open Source Self-Driving Car Project, Simulator,
Auto1-Robocar-Lidar, Auto2-CNN-KITTI-TORCS,
Auto3-CNN-OSM-GSV
2. 2017.8.8: D. Lee, Introduction
to Humanoid Robotics
3. 2017.9.11: ³¯«aÀM, Introduction to Visual Common Sense for
Autonomous Driving
4. 2017.9.25: Auto4-DeepQNet-Atari (DQN1), Auto5-DQN-TORCS
(Patent, TFCode,
DQN2, OpenAI Gym (Paper))
5. 2017.9.25: ¼B«aº~, At First Glance for Direct Perception
and Simulator TORCS in Autonomous Driving
More ¡K
[1]* Google TensorFlow Frontiers,
Non-Experts, ML APIs, Dev Summit
2017
[2]* OpenAI,
OpenAI Universe
[3] TensorFlow Paper, Tensorflow Course
[4] Raúl Rojas (TOC),
Yaser Abu-Mostafa
[5] Python Book, GPU
Programming, GPU More
[6] Theano Paper, Theano Programming
[7]* KDD
Cup Competition
[8]* Data Science Game
News
1. 2017.9.26: ¬ì§Þ³¡106¦~«×²Ä¤G±è¦¸¡u³Õ¤h³Ð·s¤§¬Ppµe(LEAP)¡v§Y±N©ó106¦~9¤ë30¤é½u¤W¥Ó½Ð³ø¦WºI¤î¡C¬ì§Þ³¡AI³Ð·s±M®×pµe±À°Ê¿ì¤½«ÇèÀò±x¦³¥H¤UAI¤½¥q´£¨ÑY¤z¦WÃB¡G¡ÐDeeplearning.ai
(Andrew Ng ªº·s³Ð¤½¥q) ¡ÐFortemedia (¶Àª¢ªQ³Õ¤h³Ð¥ß±Mª`»yµ³B²z§Þ³N) ¬°°ö¨|°ª¶¥¬ì§Þ·s¿³¤H¤~¡B¤Þ»â¤H¤~³sµ²°ê»Ú¨Ã«Ø¥ß³Ð·s¥¥x¡A´f½Ð¹ªÀy¦X¾A¤H¿ï¿ãÅD³ø¦W°Ñ¥[¡C¸Ô²Ó¸ê°T¤Î³ø¦W¤è¦¡½Ð°Ñ¦Ò³Õ¤h¤§¬P(©x¤èºô¯¸)¡Ghttps://leap.stpi.narl.org.tw/index.htm.
2017
Summer Course
A Short Scientific Programming Course for All Students
Prerequisites: Undergraduate Calculus
and Programming
Time: 1 ~ 4pm, Tuesdays, July 4 ~ Aug. 8 (6 weeks), 2017
Place: ®Õ¥»³¡ºî¤TÀ]203
Please register
online ½u¤Wµù¥U for this course.
Instructor: Jinn-Liang Liu 2017.5.21